Abstract

Plants or plant cells can be used to produce pharmacological glycoproteins such as antibodies or vaccines. However these proteins carry N-glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose], which can greatly impact the immunogenicity, allergenicity, or activity of the protein. Two enzymes are responsible for the addition of plant-specific glycans: β(1,2)-xylosyltransferase (XylT) and α(1,3)-fucosyltransferase (FucT). Our aim consisted of knocking-out two XylT genes and four FucT genes (12 alleles altogether) in Nicotiana tabacum BY-2 suspension cells using CRISPR/Cas9. Three XylT and six FucT sgRNAs were designed to target conserved regions. After transformation of N. tabacum BY-2 cells with genes coding for sgRNAs, Cas9, and a selectable marker (bar), transgenic lines were obtained and their extracellular as well as intracellular protein complements were analyzed by Western blotting using antibodies recognizing β(1,2)-xylose and α(1,3)-fucose. Three lines showed a strong reduction of β(1,2)-xylose and α(1,3)-fucose, while two lines were completely devoid of them, indicating complete gene inactivation. The absence of these carbohydrates was confirmed by mass spectrometry analysis of the extracellular proteins. PCR amplification and sequencing of the targeted region indicated small INDEL and/or deletions between the target sites. The KO lines did not show any particular morphology and grew as the wild-type. One KO line was transformed with genes encoding a human IgG2 antibody. The IgG2 expression level was as high as in a control transformant which had not been glycoengineered. The IgG glycosylation profile determined by mass spectrometry confirmed that no β(1,2)-xylose or α(1,3)-fucose were present on the glycosylation moiety and that the dominant glycoform was the GnGn structure. These data represent an important step toward humanizing the glycosylation of pharmacological proteins expressed in N. tabacum BY-2 cells.

Highlights

  • The production of recombinant proteins in plants is seen as an interesting alternative to the current means of production of biopharmaceutics in microbial and mammalian cultures

  • One of them is based on plant suspension cells

  • We have shown that the CRISPR/Cas9 nuclease could be used to inactivate a gene in N. tabacum Bright yellow 2 (BY-2) cells (Mercx et al, 2016)

Read more

Summary

INTRODUCTION

The production of recombinant proteins in plants (molecular farming) is seen as an interesting alternative to the current means of production of biopharmaceutics in microbial and mammalian cultures. A plant-based expression platform expressing recombinant proteins devoid of any β(1,2)-xylose or α(1,3)-fucose would be very welcome It would make the glycosylation more homogenous and potentially more efficient. Before the discovery of CRISPR/Cas and its high potential to edit any given gene, there were three classes of sequence-specific nucleases used to inactivate genes in plants: the meganucleases, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) (Voytas, 2013). Those technologies are not straightforward, especially when multiple genes must be inactivated. These data show that N. tabacum BY-2 cells can be engineered to humanize pharmacological glycoproteins produced in this host

MATERIALS AND METHODS
RESULTS
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call