Abstract

AbstractA direct‐current, atmospheric pressure, cold plasma microjet (PMJ) sustained in a quasi‐steady gas cavity in liquid was used to inactivate Staphylococcus aureus suspended in distilled water. While helium gas (with 2% O2 as additive) was used as working gas, an effective inactivation (>99%) was achieved in 6 min. The inactivation of bacteria was further verified by surface morphology examination and LIVE/DEAD Baclight bacterial viability test (fluorescence microscopy). The overall pH and temperature of the liquid were monitored during the plasma treatment and were found to be below the critical values for the survival of S. aureus. Hydroxyl radical (•OH) was detected via electron spin resonance (ESR) spectroscopy, and alongside other intermediate reactive species, is attributed to the effective inactivation of S. aureus. End‐on optical emission spectroscopy show strong atomic oxygen emission both in air and in water.magnified image

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.