Abstract

The STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) controls the activity of the electroneutral cation-chloride cotransporters (SLC12 family) and thus physiological processes such as modulation of cell volume, intracellular chloride concentration [Cl-]i, and transepithelial salt transport. Modulation of SPAK kinase activity may have an impact on hypertension and obesity, as STK39, the gene encoding SPAK, has been suggested as a hypertension and obesity susceptibility gene. In fact, the absence of SPAK activity in mice in which the activating threonine in the T loop was substituted by alanine (SPAK-KI mice) is associated with decreased blood pressure; however its consequences in metabolism have not been explored. Here, we fed wild-type and homozygous SPAK-KI mice a high-fat diet for 17 wk to evaluate weight gain, circulating substrates and hormones, energy expenditure, glucose tolerance, and insulin sensitivity. SPAK-KI mice exhibit resistance to HFD-induced obesity and hepatic steatosis associated with increased energy expenditure, higher thermogenic activity in brown adipose tissue, increased mitochondrial activity in skeletal muscle, and reduced white adipose tissue hypertrophy mediated by augmented whole body insulin sensitivity and glucose tolerance. Our data reveal a previously unrecognized role for the SPAK kinase in the regulation of energy balance, thermogenesis, and insulin sensitivity, suggesting that this kinase could be a new drug target for the treatment of obesity and the metabolic syndrome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.