Abstract

The application of cold atmospheric pressure plasma (CAP) for decontamination of sliced ready-to-eat (RTE) meat products (in this case, rolled fillets of ham), inoculated with Salmonella (S.) Typhimurium and Listeria (L.) monocytogenes was investigated. Cold atmospheric plasma (CAP) is an ionised gas that includes highly reactive species and ozone, interacting with cell membranes and DNA of bacteria. The mode of action of CAPs includes penetration and disruption of the outer cell membrane or intracellular destruction of DNA located in the cytoplasm. Inoculated ham was treated for 10 and 20 min with CAP generated by a surface-micro-discharge-plasma source using cost-effective ambient air as working gas with different humidity levels of 45–50 and 90%. The chosen plasma modes had a peak-to-peak voltage of 6.4 or 10 kV and a frequency of 2 and 10 kHz. Under the tested conditions, the direct effectiveness of CAP on microbial inactivation was limited. Although all treated samples showed significant reductions in the microbial load subsequent to plasma treatment, the maximum inactivation of S. Typhimurium was 1.14 lg steps after 20 min of CAP-treatment (p<0.05), and L. monocytogenes was reduced by 1.02 lg steps (p<0.05) using high peak-to-peak voltage of 10 kV and a frequency of 2 kHz regardless of moisture content. However, effective inactivation was achieved by a combination of CAP-treatment and cold storage at 8°C ± 0.5°C for 7 and 14 days after packaging under sealed high nitrogen gas flush (70% N2, 30% CO2). Synergistic effects of CAP and cold storage for 14 days led to a clearer decrease in the microbial load of 1.84 lg steps for S. Typhimurium (p<0.05) and 2.55 lg steps for L. monocytogenes (p<0.05). In the case of L. monocytogenes, subsequent to CAP-treatment (10 kV, 2 kHz) and cold storage, microbial counts were predominantly below the detection limit. Measurement showed that after CAP-treatment, surface temperature of ham did not exceed the room temperature of 22°C ± 2°C. With the application of humidity levels of 45–50%, the colour distance ΔE increased in CAP treated samples due to a decrease in L* values. In conclusion, effectiveness of CAP-treatment was limited. However, the combination of CAP-treatment and cold storage of samples under modified-atmospheric-conditions up to 14 days could significantly reduce microorganisms on RTE ham. Further investigations are required to improve effectiveness of CAP-treatment.

Highlights

  • Ready-to-Eat (RTE) products imply quick availability, a high level of freshness, good quality and constant nutritional values

  • The inactivation proved to be more effective than the inactivation of L. monocytogenes with 4.2 ± 0.2 lg steps after 10 min and 4.4 ± 0.3 lg steps after 20 min

  • Similar results were reported by Lee et al, who achieved reductions in L. monocytogenes between 0.9 and 7.6 lg steps after a two minute treatment using an atmospheric pressure plasma jet with different percentages of inert gases (He, N2 and O2) [24]

Read more

Summary

Introduction

Ready-to-Eat (RTE) products imply quick availability, a high level of freshness, good quality and constant nutritional values. Contamination could occur anytime throughout processing procedures and might be amplified by a long shelf life of RTE products. RTE products are not heated by the consumer before consumption, so microbial safety has to be guaranteed in a different way. This product category includes the very popular pre-sliced raw sausage products, e.g., rolled fillets of ham. It should be noted that the production process of slicing and packaging raw sausage is associated with a surface extension which is prone to a higher contamination rate [1]. Listeria monocytogenes can be transferred to ham during the entire production process [2], while Salmonella spp. is mainly transmitted by infected employees. Symptoms of listeriosis include fever, diarrhoea and vomiting and YOPIS (young, old, pregnant and immunosuppressed people) are at risk of a severe progress of the disease [6, 7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.