Abstract

Experiments were carried out to assess the survival of recombinant plasmid DNA during large-scale production of recombinant human erythropoietin (rhuEPO) in a fermentation pilot plant. The analyses revealed DNA-degrading activities in the fermentation broth and in the waste-water, leading to rapid destruction of plasmid DNA added to medium or waste-water. The capability of the plasmid-DNA-spiked samples to transform competent bacteria was drastically reduced. The DNA-degrading activity in the waste-waters could be blocked by addition of EDTA or by boiling, indicating the presence of DNA-degrading enzymes (DNases). No plasmid-specific DNA sequences were detected in waste-water samples by in-vitro amplification with Taq-polymerase. Genomic DNA preparations of cell debris collected from waste-water samples only contained degraded plasmid DNA. Furthermore, it was shown that intact plasmid DNA could be degraded to fragments of less than 1000 bp by incubation at 121 degrees C for 20 min, leading to a decrease in the plasmid-specific transforming capacity by a factor of 10(3) per minute. Thus, DNA from the rhuEPO production pilot plant was efficiently inactivated at three different levels: (i) in the fermentation medium (DNase), (ii) in the waste-water container (DNase), and (iii) by heat inactivation for 20 min at 120 degrees C. These results indicate that the probability of delivery of recombinant DNA into the environment is extremely low in such biotechnological production processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call