Abstract
Retinoic acid receptor β (RARβ) has been proposed to act as a tumor suppressor in breast cancer. In contrast, recent data have shown that RARβ promotes ERBB2-induced mammary gland tumorigenesis through remodeling of the stromal compartment and activation of cancer-associated fibroblasts. However, it is currently unknown whether RARβ oncogenic activity is specific to ERBB2-induced tumors, or whether it influences the initiation and progression of other breast cancer subtypes. Accordingly, we set out to investigate the involvement of RARβ in basal-like breast cancer using mouse mammary tumor virus (MMTV)-wingless-related integration site 1 (Wnt1)-induced mammary gland tumorigenesis as a model system. We found that compared with wild type mice, inactivation of Rarb resulted in a lengthy delay in Wnt1-induced mammary gland tumorigenesis and in a significantly slower tumor growth rate. Ablation of Rarb altered the composition of the stroma, repressed the activation of cancer-associated fibroblasts, and reduced the recruitment of inflammatory cells and angiogenesis. Reduced expression of IGF-1 and activity of its downstream signaling pathway contribute to attenuate EMT in the Rarb-null tumors. Our results show that, in the absence of retinoid signaling via RARβ, reduced IGF-1 signaling results in suppression of epithelial-mesenchymal transition and delays tumorigenesis induced by the Wnt1 oncogene. Accordingly, our work reinforces the concept that antagonizing RARβ-dependent retinoid signaling could provide a therapeutic avenue to treat poor outcome breast cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.