Abstract

Preservation of fruit juices requires the inactivation of natural endogenous enzymes, such as pectinmethylesterase (PME). Within this work, cold atmospheric plasma (CAP), and in particular a dielectric barrier plasma jet fed with helium gas, was demonstrated to effectively inactivate PME of freshly squeezed orange juice in short treatment times (2–30 min). By a combination of temperature measurements and a multidimensional heat transfer model, the temperature profile of the whole sample during plasma treatment was extracted. It was found that the thermal phenomena were not a driving factor for PME inactivation. Plasma treatment of orange juices resulted in inactivation of 55–80% of PME with <5.0% of PME inactivation caused by the temperature increase from 20 to 90 °C. The Weibull distribution model compared to the first-order fractional, the sigmoidal logistic and the Hulsheger's kinetic models was found to better describe mathematically (R2 > 0.99; Af = 1.002–1.052) the effect of CAP processing on residual PME activity. Multi-parameter equation fits allowed the prediction of residual PME activity as a function of the applied voltage, helium flow, and treatment time. Generally, higher voltages and lower helium flows applied led to higher PME inactivation rates in fresh orange juice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call