Abstract

Excitatory synapses arising from local neurons in the cat visual cortex are much more numerous than the thalamocortical synapses, which provide the primary sensory input. Many of these local circuit synapses are involved in the connections between cortical layers, but lateral connections within layers provide a major component of the local circuit synapses. We tested the influence of these lateral connections in the primary visual cortex of cats by inactivating small patches of cortex about 450 microm lateral from the recording pipette. By use of the neurotransmitter gamma-aminobutyric acid (GABA), small patches of cortex were inhibited and released from inhibition in seconds. Orientation tuning curves derived from responses to oriented drifting gratings were obtained during short control periods interleaved with periods of GABA inactivation. About 30% of the cells (18/62, recorded in all layers) changed their orientation tuning when a small portion of their lateral input was silenced. There was no broadening of the orientation tuning curve during lateral inactivation. Instead, the recorded cells shifted their preferred orientation towards the orientation of the inactivated site. One explanation is that the GABA inactivation alters the balance of excitatory and inhibitory inputs to a cell, which results in a shift of the cell's preferred orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call