Abstract

We examined the effects of acute isobutyl nitrite (ISBN) exposure on the activity of several hepatic enzymes. Two strains of adult male mice (Balb/c and C57BL/6) were exposed to 900 ppm ISBN or ambient air for 45 minutes. The enzyme activity of hepatic cytochrome P450 (CYP)-mediated deethylation, glutathione S-transferase (GST), and carboxylesterase (CBE) was monitored through the substrates 3-cyano-7-ethoxycoumarin (CEC), 1-chloro-2,4-dinitrobenzene, and p-nitrophenyl acetate, respectively. Acute ISBN exposure led to a significant reduction in hepatic CYP-mediated CEC deethylation, GST, and CBE activity in Balb/c mice (of 81.5%, 74.7%, and 25.2%, respectively, vs control mice, each at P < .05) when livers were harvested immediately after inhalant exposure. The corresponding decreases in C57BL/6 mice were smaller (with reductions of 21.8%, 18.8%, and 13.3%, respectively, each at P < .05). This enzyme activity, tested in C57BL/6 mice only, returned to control values after a 24-hour period of nonexposure. Follow-up mechanistic investigations using rat liver GST indicated that ISBN-mediated enzyme inactivation was not caused by its metabolites: inorganic nitrite ion (NO2-) or nitric oxide. This inactivation could be prevented, but not reversed, by added glutathione, suggesting irreversible protein oxidation. Using different NO donors as comparative agents, we found that GST inactivation by ISBN was not associated with protein S-nitrosylation or disulfide formation, but with tyrosine nitration. Inhalant nitrite exposure, therefore, led to a significant reduction in hepatic enzyme activity in mice, possibly through tyrosine nitration of hepatic proteins. This effect raises the possibility of drug-drug metabolic interactions from inhalant nitrite abuse. However, determining the applicability of these findings to humans will require further study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call