Abstract

In this study, biochars (BCs) derived from corn stalk treated at various pyrolysis temperatures (350–950 °C) were prepared and then loaded with Cu2+ to form highly efficient algaecide, i.e. Cu2+-doped BC composites (Cu-BCs). The results showed BCs pyrolyzed at higher temperatures suppressed the growth of Microcystis aeruginosa in the order of BC550 ≫ BC750 > BC950, while BC350 accelerated cell growth due to the release of inorganic nutrients. The difference could be attributed to the physicochemical characteristics, including specific surface area, adsorption capacity of nutrients and the presence of particularly persistent free radicals. Furthermore, Cu-BCs exhibited the improved inactivation performance, but the 72 h growth inhibition rates and reaction activities of Cu-BCs were still influenced by the Cu2+ loading ratio and pyrolysis temperature. These results, reported for the first time, demonstrated the algae inactivation efficiency of pristine BCs, and Cu-BCs were principally manipulated by the biochar pyrolysis temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call