Abstract

N(3)-Oxoacyl derivatives of L-2,3-diaminopropanoic acid 1-4, containing either an epoxide group or a conjugated double bond system, inactivate Saccharomyces cerevisiae glucosamine-6-phosphate (GlcN-6-P) synthase in a time- and concentration dependent manner. The results of kinetics studies on inactivation suggested a biphasic course, with formation of the enzyme-ligand complex preceding irreversible modification of the enzyme. The examined compounds differed markedly in their affinity to the enzyme active site. Inhibitors containing a phenyl ketone moiety bound much more strongly than their methyl ketone counterparts. The molecular mechanism of enzyme inactivation by phenyl ketone compounds 1 and 3 was elucidated by using a stepwise approach with 2D NMR, MS and UV-visible spectroscopy. A substituted thiazine derivative was identified as the final product of a model reaction between an epoxide compound, 1, and L-cysteine ethyl ester (CEE); and the respective cyclic product, found as a result of reaction between 1 and CGIF tetrapeptide, was identical to the N-terminal fragment of GlcN-6-P synthase. On the other hand, the reaction of a double-bond-containing compound, 3, with CEE, CGIF and GlcN-6-P synthase led to the formation of a C-S bond, without any further conversion or rearrangement. Molecular mechanisms of the reactions studied are proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.