Abstract

Creatine kinase (CK) was used as a marker molecule to examine the side effects of damage to tissues by mefenamic acid, an effective drug to treat rheumatic and arthritic diseases, with horseradish peroxidase and hydrogen peroxide (HRP-H 2O 2). Mefenamic acid inactivated CK during its interaction with HRP-H 2O 2. Also, diphenylamine and flufenamic acid caused a loss of CK activity, indicating the imino group, not substituent groups, in the phenyl rings have a crucial role in CK inactivation. Rapid change in mefenamic acid spectra was detected, suggesting that mefenamic acid is efficiently oxidized by HRP-H 2O 2. Peroxidases oxidize xenobiotics to free radicals by a one-electron transfer. However, direct detection of mefenamic acid radicals by electron spin resonance (ESR) was unsuccessful. Reduced glutathione and 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) in the reaction mixture containing mefenamic acid with HRP-H 2O 2 produced ESR signals consistent with a DMPO-glutathionyl radical adduct. These results suggest that inactivation of CK is probably caused through formation of mefenamic acid radicals. Sulfhydryl groups and tryptophan residues of CK were diminished by mefenamic acid with HRP-H 2O 2. Other SH enzymes, including alcohol dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase, were very sensitive to mefenamic acid with HRP-H 2O 2. Inactivation of SH enzymes may explain some deleterious actions of mefenamic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.