Abstract

Shipping of serum samples that were taken from pigs infected with classical swine fever (CSF) virus is frequently requested with the objective of serological analyses, not only for diagnostic purposes but also for exchange of reference materials that are used as control material of diagnostic assays. On the basis of the fact that an outbreak with CSF is associated with enormous economic losses, biological safety during the exchange of reference material is of great importance. The present study aimed to establish a pragmatic approach for reliable CSF virus (CSFV) inactivation in serum without impairing antibody detection. Considering the fact that complement inactivation through heating is routinely applied, the basic idea was to combine heat treatment with the dilution of serum in a detergent containing buffer in order to facilitate the inactivation process. The results show that treatment of serum samples with phosphate buffered saline-Tween20 (final concentration = 0.15%) along with incubation at 56 °C for 30 min inactivated CSFV and such treatment with ≤ 0.25% PBS-Tween20 does not impair subsequent antibody detection by ELISA or virus neutralization test. This minimizes the risk of virus contamination and represents a valuable contribution to a safer CSF diagnosis on a national and international level.

Highlights

  • Classical swine fever (CSF) is one of the most important diseases in domestic pigs and wild boar and is notifiable to the World Organization of Animal Health (OIE)

  • Reference material is often requested for verification and validation of diagnostic assays applied for detection of classical swine fever virus (CSFV) genomes or antibodies against CSFV

  • This sample material is obtained from animals that were infected with CSFV

Read more

Summary

Introduction

Classical swine fever (CSF) is one of the most important diseases in domestic pigs and wild boar and is notifiable to the World Organization of Animal Health (OIE). The disease is caused by the pestivirus classical swine fever virus (CSFV) which belongs to the virus family Flaviviridae [1]. An outbreak with CSF is associated with enormous economic losses due to the high mortality of the disease itself, as well as due to the widely conducted stamping out policy, which implies large-scale preventive culling of pigs along with transport and trade restrictions. The recent emergence of CSF in Japan after 26 years absence provides an illustrative example for the continuous risk of reintroduction of the disease in CSF-free countries [3,4]. Maintenance of solid knowledge of the clinical disease and a rapid diagnosis of a CSF outbreak represent indispensable prerequisites for effective control of CSF. To keep diagnostic protocols up to date, constant verification and validation of the diagnostic methods is of great importance and Pathogens 2019, 8, 286; doi:10.3390/pathogens8040286 www.mdpi.com/journal/pathogens

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.