Abstract
In stationary phase, 95% of the fructosyltransferase (FTase) activity of Streptococcus salivarius ATCC 25975 was found associated with the cells. Within the first 15 min after inoculation into fresh medium, the specific activity of cell-associated FTase decreased by 92% of its initial value. After this period of initial loss, the enzyme was synthesized during exponential growth until a maximum level equivalent to that present before inoculation was obtained. The inactivation of FTase was also demonstrated in a nongrowing system. Washed cell suspensions incubated at 37 degrees C in 200 mM potassium phosphate buffer (pH 6.5) containing 10 microM Cu2+ lost 80 to 95% of their FRase activity after 30 min. This loss could be prevented by the addition of histidine, cysteine, or Ca2+ to the suspension mixture. A factor(s) essential for the inactivation of cell-associated FTase could itself be preferentially inactivated by heating cells at 40 degrees C for periods of up to 3 h, or by storage of cells at 0 to 4 degrees C for several days in a low-ionic-strength, low-pH, potassium phosphate buffer. Treatment of cells with the N-acetylmuramidase enzyme M-1, in the presence of 0.5 M melezitose, resulted in the release of FTase from the cell. The released enzyme was recovered in the supernatant fraction after centrifugation at 160,000 x g for 90 min. Comparison of solubilized active and inactivated FTase preparations by polyacrylamide gel electrophoresis demonstrated that the inactivation of cell-associated FTase activity was associated with the loss of specific protein bands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.