Abstract

The antimicrobial effects of the cold plasma for the dental pathogenic microorganism propose a promising approach to the Denture Stomatitis (DS) treatment. However, it is crucial to understand that the complexity of the biofilm microenvironment may compromise the efficiency of the therapy. As one of the major issue for DS, Candida albicans biofilms (ATCC10231) formed on denture base resins were treated by cold Ar/O2 (2 %) plasma jet. Spatial viability of the biofilms was investigated with confocal scanning laser microscopy through evaluating their inside cross-section properties. Results showed Candida albicans biofilms with thickness of ~100 µm was completely inactivated by 8 min plasma treatment. Morphology change of the fungi was also observed by the scanning electron microscopy. Drug susceptibilities, the sessile minimum inhibitory concentration (SMIC50) of the biofilm for amphotericin B and fluconazole were decreased from >32 and >256 µg/mL to 8 and 64 µg/mL after 1 min’s plasma treatment, respectively. The reactive species produced from plasma were monitored by optical emission spectroscopy. The successfully inactivation of Candida albicans biofilms and the significant enhancement of its drug susceptibilities induced by the plasma released reactive species propose a promising strategy for the treatment of DS caused by drug-resistant Candida albicans biofilms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call