Abstract

In the human prostate, dihydrotestosterone (DHT) -- the natural androgen having the highest affinity for the androgen receptor -- is not released directly into the systemic circulation from peripheral target tissues but it is rather converted in situ into two metabolites which have a low affinity for the androgen receptor: androsterone (ADT) and androstane-3alpha,17beta-diol (3alpha-DIOL). Several clinical observations indicate that these two androgen metabolites are further inactivated in the prostate by glucuronidation. In the human, the family of UDP-glucuronosyltransferase (UGT) enzymes comprises 18 members in three subfamilies: UGT1A, UGT2A and UGT2B. Identification of the substrates for each member has revealed that three UGT2B enzymes are mainly responsible for DHT, ADT and 3alpha-DIOL glucuronidation: UGT2B7, UGT2B15 and UGT2B17. Tissue distribution and cellular localization of UGT2B transcripts and proteins clearly indicate that only UGT2B15 and UGT2B17 are expressed in the prostate. Using the human prostate carcinoma LNCaP cell line, it was shown that UGT2B expression and activity are negatively regulated by several factors, including androgens. On the other hand, inhibition of UGT2B115/17 expression by small interfering RNA (siRNA) resulted in an induced response to DHT of androgen-receptor target genes such as PSA, KLK4, NKX3.1, TMPRSS2, SLC16A6 and VEGF. It is suggested that the conjugating activity of UGT enzymes in androgen target tissues is a mechanism for modulating the action of steroids and/or protecting the tissues from deleterious high concentrations of androgens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.