Abstract

The COVID-19 pandemic has led to increasing interest in controlling airborne virus transmission during the operation of air-conditioning systems. Therefore, beyond an examination of the ability of liquid-desiccant material itself to inactivate microbes, a heat-pump-driven liquid-desiccant air-conditioning system was proposed and constructed to experimentally investigate the effect of liquid-desiccant solution on the inactivation of airborne bacteria and fungi in various air-conditioning processes. The proposed system comprises a liquid-desiccant unit to dehumidify or humidify process air using a desiccant-solution and heat-pump unit to cool or heat it and accommodate solution thermal loads. The decrease in the concentration of airborne bacteria and fungi before and after passing through the system (i.e., inactivation efficiency) were compared for the base, summer, and winter operating modes. The results indicated that airborne fungi were less inactivated than bacteria because they possess more stress-resistant cellular structures that resist inactivation. During the air-conditioning processes in both the summer and winter operating modes, the bacterial and fungal inactivation efficiencies improved compared to the base mode owing to the contact with desiccant solution. The higher solution flow rate and solution temperature improved the bacterial inactivation efficiency by 27% for the winter compared to the summer mode. Conversely, because of possible growth of fungi in the heated and humidified supply air in the winter, the fungal inactivation efficiency improved by only 1.5% for the winter compared to the summer mode. In conclusion, the proposed system can contribute to control the airborne transmission of microbial contaminants while operating air-conditioning systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call