Abstract
Polymorphonuclear neutrophils, a first line of defence against invading microbial pathogens, may be attracted by inflammatory mediators triggered by ultrahigh-molecular-weight polyethylene (UHMWPE) wear particles released from orthopaedic prostheses. Phagocytosis of UHMWPE particles by neutrophils may indirectly compromise their phagocytic-bactericidal mechanisms, thus enhancing host susceptibility to microbial infections. In an in vitro assay, pre-exposure of purified human neutrophils to UHMWPE micrometre- and submicrometre-sized wear particles interfered with subsequent Staphylococcos aureus uptake in a heterogeneous way, as assessed by a dual label fluorescence microscopic assay that discriminated intracellular rhodamine-labelled UHMWPE particles from fluorescein isothiocyanate-labelled S. aureus. Indeed, a higher percentage (44%) of neutrophils having engulfed UHMWPE particles lost the ability to phagocytize S. aureus, compared with UHMWPE-free neutrophils (<3%). Pre-exposure of neutrophils to UHMWPE wear particles did not impair but rather stimulated their oxidative burst response in a chemoluminescence assay. The presence of UHMWPE wear particles did not lead to significant overall consumption of complement-mediated opsonic factors nor decreased surface membrane display of neutrophil complement receptors. In conclusion, engulfment of UHMWPE wear particles led to inactivation of S. aureus uptake in nearly half of the neutrophil population, which may potentially impair host clearance mechanisms against pyogenic infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.