Abstract

Wheat is one of the most important staple crops produced worldwide. Its susceptibility to plant diseases reduces its production significantly. One of the most important diseases of wheat is septoria tritici blotch, a devastating disease observed in fields with wet and temperate conditions. Z. tritici secretes effector proteins to influence the host's defense mechanisms, as is typical of plant pathogens. In this investigation, we evaluated the pathogenicity of some Zymoseptoria tritici effector candidate genes having a signal peptide for secretion with no known function. Three genes named Mycgr3G104383, Mycgr3G104444 and Mycgr3G105826 were knocked out separately through homologous recombination, generating Z. tritici IPO323 mutants lacking the functional copy of the corresponding genes. While KO1 and KO3 mutants did not show any significant differences during phenotypic and virulence investigations, the KO2 mutant generated exclusively macropycnidiospores in artificial media, different from wild-type IPO323 which produce only micropycidiospores. The mycelial growth capability of KO2 was also severely attenuated in all of the investigated growth conditions. These changes were observed independent of growth media and growth temperatures, implying that changes were genetic and inherited through generations. Virulence of knockout mutants in wheat leaves was observed to be similar to the wild-type IPO323. Understanding the biology of Z. tritici and its interactions with wheat will reveal new strategies to fight septoria tritici blotch, enabling breeding wheat cultivars resistant to a broader spectrum of Z. tritici strains. Furthermore, gene knockout via homologous recombination proved to be a powerful tool for discovering novel gene functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.