Abstract

A kinetic study of the inactivation of endogenous pectin methylesterase (PME) in Greek commercial peach pulp under high hydrostatic pressure (HHP; 100–800 MPa) combined with moderate temperature (30–70 °C) was conducted. Thermal inactivation of the enzyme at ambient pressure conditions was also studied. PME inactivation was modeled by first order kinetics at all conditions tested. High pressure and temperature acted synergistically on PME inactivation, except at the high temperature of 70 °C at the middle pressure range (100–600 MPa), where an antagonistic effect of pressure and temperature was observed. At this specific middle pressure range, an increase of pressure processing led to increased inactivation rate constants of peach PME. A multiparameter model was developed to express the PME inactivation rate constant as a function of temperature and pressure process conditions, taking into account the dependence of both activation energy and activation volume on pressure and temperature, respectively. A good correlation between experimental and predicted values of inactivation rate constants was established. This modeling approach enables the quantitative estimation of the HHP–temperature conditions needed to achieve a targeted PME inactivation in the peach pulp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.