Abstract

Reliable catalysis is critical for the synthesis of various chemicals, molecular sensing and biomedicine. G-quadruplex/Hemin (GQH) complex, a peroxidase-mimicking DNAzyme, has been widely used in various publications. However, a concern exists about the unstable kinetics of GQH-catalyzed peroxidation. This work investigates several factors that result in the inactivation of GQH and the signal degradation during long reaction periods, including pH, buffer component, the selection of substrate and the oxidation damage of cofactor. Using colorimetric and fluorescent assays, GQH was found to be highly unstable under basic conditions with 50 % of GQH activity lost within 2 minutes at high H2 O2 concentrations. Appropriate conditions and substrates are suggested for accurately characterizing GQH-catalyzed reactions, as well as optimization to improve the catalytic reliability, such as the use of polyhistidine and cascade reactions. These results could be useful for GQH-related applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.