Abstract

Polyphenol oxidase (PPO) is considered a problem in the food industry because it starts browning reactions during fruit and vegetable processing. Ultrasonic treatment is a technology used to inactivate the enzyme; however, the mechanism behind PPO inactivation is still unclear. For this reason, the inactivation, aggregation, and structural changes in PPO from quince juice subjected to ultrasonic treatments were investigated. Different intensities and times of ultrasonic treatment were used. Changes in the activity, aggregation, conformation, and structure of PPO were investigated through different structural analyses. Compared to untreated juice, the PPO activity in treated juice was reduced to 35% at a high ultrasonic intensity of 400 W for 20 min. The structure of PPO determined from particle size distribution (PSD) analysis showed that ultrasound treatment caused initial dissociation and subsequent aggregation leading to structural modification. The spectra of circular dichroism (CD) analysis of ultrasonic treated PPO protein showed a significant loss of α-helix, and reorganization of secondary structure. Fluorescence analysis showed a significant increase in fluorescence intensity of PPO after ultrasound treatment with evident blue shift, revealing disruption in the tertiary structure. In summary, ultrasonic treatment triggered protein aggregation, distortion of tertiary structure, and loss of α-helix conformation of secondary structure causing inactivation of the PPO enzyme. Hence, ultrasound processing at high intensity and duration could cause the inactivation of the PPO enzyme by inducing aggregation and structural modifications. © 2019 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.