Abstract

Dyes which photosensitize membranes may be clinically useful for photodynamic treatment (PDT) of Herpes simplex virus (HSV) infections. It is important to determine whether the enveloped HSV can be inactivated via membrane damage without affecting the genetic material. Selection of appropriate PDT conditions, including the choice of dye, could minimize viral mutagenesis. We determined the mutagenesis caused by PDT employing three membrane-photosensitizing dyes of potential use in cancer photochemotherapy (Photofrin II, polyhematoporphyrin esters, zinc phthalocyanine tetrasulfonates) and a DNA-photosensitizing dye (proflavine sulfate). The effects were compared to those caused by exposure of HSV to ultraviolet radiation (UV). The procedure consisted of incubating HSV with microgram/ml (microM) concentrations of the dye, irradiating the samples with broad spectrum visible/near-UV radiation (Daylight fluorescent lamps) and assaying the survival of the treated HSV. Zinc phthalocyanine was the most potent dye per absorbed photon for inactivating HSV. In parallel with determination of survival, progeny of the surviving virus were grown for determination of mutagenesis. The progeny virus was harvested and subsequently assayed in the presence and absence of 40 micrograms/ml iododeoxycytidine (ICrd) to determine the frequency of mutation to ICrd resistance. Mutation frequencies were determined for progeny from the 1-4% survival level. For PDT with each membrane-photosensitizing dye, only zinc phthalocyanine increased the mutation frequency over the untreated control. This increase was less than 2-fold. Proflavine increased the mutation frequency 2-3 fold over the untreated control. Ultraviolet produced a 15-20 fold increase over the untreated control.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.