Abstract
Various systems to administer inhaled nitric oxide (NO) have been used in patients and experimental animals. We used a lung model to evaluate five NO delivery systems during mechanical ventilation with various ventilatory patterns. An adult mechanical ventilator was attached to a test lung configured to separate inspired and expired gases. Four injection systems were evaluated with NO injected either into the inspiratory circuit 90 cm proximal to the Y piece or directly at the Y piece and delivered either continuously or only during the inspiratory phase. Alternatively, NO was mixed with air using a blender and delivered to the high-pressure air inlet of the ventilator. Nitric oxide concentration was measured from the inspiratory limb of the ventilator circuit and the tracheal level using rapid- and slow-response chemiluminescence analyzers. The ventilator was set for constant-flow volume control ventilation, pressure control ventilation, pressure support ventilation, or synchronized intermittent mandatory ventilation. Tidal volumes of 0.5 l and 1 l were evaluated with inspiratory times of 1 s and 2 s. The system that premixed NO proximal to the ventilator was the only one that maintained constant NO delivery regardless of ventilatory pattern. The other systems delivered variable NO concentration during pressure control ventilation and spontaneous breathing modes. Systems that injected a continuous flow of NO delivered peak NO concentrations greater than the calculated dose. These variations were not apparent when a slow-response chemiluminescence analyzer was used. NO delivery systems that inject NO at a constant rate, either continuously or during inspiration only, into the inspiratory limb of the ventilator circuit produce highly variable and unpredictable NO delivery when inspiratory flow is not constant. Such systems may deliver a very high NO concentration to the lungs, which is not accurately reflected by measurements performed with slow-response analyzers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.