Abstract

In this work, a TiO2/In2S3 heterojunction film was successfully synthesized using a one-step hydrothermal method and applied in the photocathodic protection (PCP) of 304SS. The octahedral In2S3 and In2S3@TiO2 nanoparticles combined and coexisted with each other, with In2S3 quantum dots growing on the surface of TiO2 to form In2S3@TiO2 with a wrapping structure. The composite photoelectrode, which includes TiO2 with a mixed crystalline phase and In2S3, exhibited significantly enhanced PCP performance for 304SS compared with pure In2S3 and TiO2. The In2S3@TiO2/In2S3 composites with 0.3 g of P25 titanium dioxide (P25) showed the best protection performance, resulting in a cathodic shift of its OCP coupled with 304SS to -0.664 VAgCl. The electron transfer tracking results demonstrate that In2S3@TiO2/In2S3 forms a Z-scheme heterojunction structure. The enhanced PCP performance could be attributed to the synergistic effect of the mixed crystalline phase and the Z-scheme heterojunction system. The mixed crystalline phase of TiO2 provides more electrons, and these electrons are gathered at higher energy potentials in the Z-scheme system. Additionally, the built-in electric field further promotes the more effective electrons transfer from photoelectrode to the protected metals, thus, leading to enhanced photoelectrochemical cathodic protection of 304SS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call