Abstract
The 1D perpendicular In2-xO3-y nanostructure arrays have been synthesized by using glancing angle deposition (GLAD) technique. A low deposition rate of 0.5 A°/S produced highly porous structure. The characteristics of junction defects and photocurrent were measured to verify the detector performance. The junction capacitance and charge retention due to presence of trap states in the device decreased with an increase in frequency. The high value of Dit∼ 5.5 × 1017 cm−2 eV−1 was calculated for the device. The detector processes low ideality factor of ∼2.04 at 300 K. The maximum photo responsivity of ∼15 A/W and internal gain of ∼47 were measured for the 1D In2-xO3-y based detector at ∼380 nm in UV region. The device shows very high current density ∼20 A/cm2 (−2 V, 300 K) under dark, which deflects to 32 A/cm2 due to illumination. Under white light on/off switching irradiation, the device operates with rise time of 1.9 s and decay time of 2.3 s. Therefore In2-xO3-y nanostructure arrays can be used as sensitive UV light detector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.