Abstract

The drastic loss of cholinergic projection neurons in the basal forebrain is a hallmark of Alzheimer's disease (AD), and drugs most frequently applied for the treatment of dementia include inhibitors of the acetylcholine-degrading enzyme acetylcholinesterase (AChE). This protein is known to act as a ligand of beta-amyloid (Abeta) in senile plaques, a further neuropathological sign of AD. Recently, we have shown that the fluorescent, heterodimeric AChE inhibitor PE154 allows for the histochemical staining of cortical Abeta plaques in triple-transgenic (TTG) mice with age-dependent beta-amyloidosis and tau hyperphosphorylation, an established animal model for aspects of AD. In the present study, we have primarily demonstrated the targeting of Abeta-immunopositive plaques with PE154 in vivo for 4 h up to 1 week after injection into the hippocampi of 13-20-month-old TTG mice. Numerous plaques, double-stained for PE154 and Abeta-immunoreactivity, were revealed by confocal laser-scanning microscopy. Additionally, PE154 targeted hippocampal Abeta deposits in aged TTG mice after injection of carboxylated polyglycidylmethacrylate nanoparticles delivering the fluorescent marker in vivo. Furthermore, biodegradable core-shell polystyrene/polybutylcyanoacrylate nanoparticles were found to be suitable, alternative vehicles for PE154 as a useful in vivo label of Abeta. Moreover, we were able to demonstrate that PE154 targeted Abeta, but neither phospho-tau nor reactive astrocytes surrounding the plaques. In conclusion, nanoparticles appear as versatile carriers of AChE inhibitors and other promising drugs for the treatment of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call