Abstract
17O is the only stable oxygen isotope that can be detected by NMR. The quadrupolar moment of 17O spin (I = 5/2) can interact with local electric field gradients, resulting in extremely short T1 and T2 relaxation times which are in the range of several milliseconds. One unique NMR property of 17O spin is the independence of 17O relaxation times on the magnetic field strength, and this makes it possible to achieve a large sensitivity gain for in vivo 17O NMR applications at high fields. In vivo 17O NMR has two major applications for studying brain function and cerebral bioenergetics. The first application is to measure the cerebral blood flow (CBF) through monitoring the washout of inert H2 17O tracer in the brain tissue following an intravascular bolus injection of the 17O-labeled water. The second application, perhaps the most important one, is to determine the cerebral metabolic rate of oxygen utilization (CMRO2) through monitoring the dynamic changes of metabolically generated H2 17O from inhaled 17O-labeled oxygen gas in the brain tissue. One great merit of in vivo 17O NMR for the determination of CMRO2 is that only the metabolic H2 17O is detectable. This merit dramatically simplifies both CMRO2 measurement and quantification compared to other established methods. There are two major NMR approaches for monitoring H2 17O in vivo, namely direct approach by using 17O NMR detection (referred as direct in vivo 17O NMR approach) and indirect approach by using 1H NMR detection for measuring the changes in T2- or T1rho-weighted proton NMR signals caused by the 17O-1H scalar coupling and proton chemical exchange (referred as indirect in vivo 17O NMR approach). Both approaches are suitable for CBF measurements. However, recent studies indicated that the direct in vivo 17O NMR approach at high/ultrahigh fields appears to offer significant advantages for quantifying and imaging CMRO2. New developments have further demonstrated the feasibility for establishing a completely noninvasive in vivo 17O NMR approach for imaging CMRO2 in a rat brain during a brief 17O2 inhalation. This approach should be promising for studying the central role of oxidative metabolism in brain function and neurological diseases. Finally, the similar approach could potentially be applied to image CMRO2 noninvasively in human brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.