Abstract

Chemical addressability of viral particles has played a pivotal role in adapting these biogenic macromolecules for various applications ranging from medicine to inorganic catalysis. Cowpea mosaic virus possesses multiple features that are advantageous for the next generation of virus-based nanotechnology: consistent multimeric assemblies dictated by its genetic code, facile large scale production, and lack of observable toxicity in humans. Herein, the chemistry of the viral particles is extended with the use of Cu-free strain-promoted azide-alkyne cycloaddition reaction, or SPAAC reaction. The elimination of Cu, its cocatalyst and reducing agent, simplifies the reaction scheme to a more straightforward approach, which can be directly applied to living systems. As a proof of concept, the viral particles modified with the azadibenzylcyclooctyne functional groups are utilized to trigger and amplify a weak fluorescent signal (azidocoumarin) in live cell cultures to visualize the non-natural sugars. Future adaptations of this platform may be developed to enhance biosensing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.