Abstract

BackgroundIn patients with small hearts, the Quantitative Gated single-photon emission computed tomography (SPECT) (QGS) program frequently underestimates the left ventricular (LV) end-systolic volume (ESV) and overestimates the ejection fraction (EF). A newly developed cardiac software program, cardioREPO/EXINI heart (cREPO), has been proposed to more accurately quantify small hearts using active shape modeling and a volume-dependent edge correction algorithm for LV delineation. The aim of this study was to validate cREPO in vivo for measuring the LV volumes and EF of both small and non-small hearts, in comparison with values obtained via cardiac MRI (CMR).MethodsWe performed stress 99mTc-MIBI SPECT and CMR within a 30-day interval for 44 patients (mean age, 66 years; 27 men). Resting EF, end-diastolic volume (EDV), and ESV with QGS and cREPO were compared with values obtained via CMR.ResultsThe subjects consisted of 17 small and 27 non-small hearts. CMR yielded EDV, ESV, and EF values of 135 ± 31 ml (mean ± SD, range 85–217 ml), 57 ± 21 ml (27–105 ml), and 60 ± 6 % (45–70 %), respectively. Compared with CMR, both QGS and cREPO systematically underestimated both EDV and ESV and overestimated EF. The magnitude of the overestimation of EF by QGS, compared with CMR, correlated strongly with the given EF values (r = 0.71, P < 0.0001). In contrast, no significant correlation was seen with cREPO (r = 0.18, P = 0.24). In addition, no significant correlation was found between the magnitude of the underestimation of ESV and heart size with cREPO (r = 0.03, P = 0.83). Thus, cREPO provided a relatively constant 9 % overestimation of EF values relative to CMR, for the studied EF range for both small and non-small hearts.ConclusionsThe use of the new algorithm of cREPO ameliorated exaggerated EF in small hearts but not resolved completely. The program provided a constant 9 % overestimation for both small and non-small hearts, which should be carefully taken into account for clinical assessment of LV function.

Highlights

  • In patients with small hearts, the Quantitative Gated single-photon emission computed tomography (SPECT) (QGS) program frequently underestimates the left ventricular (LV) end-systolic volume (ESV) and overestimates the ejection fraction (EF)

  • We found that cardioREPO/EXINI heart (cREPO) provided a constant 9 % overestimation of EF in small and non-small hearts, and, in contrast to Quantitative Gated SPECT (QGS), EF determined by cREPO did not differ between men and women, which is consistent with a previous study [10]

  • We found a systematic underestimation of end-diastolic volume (EDV) and ESV by QGS and cREPO compared to cardiac MRI (CMR), which is consistent with previous studies comparing gated SPECT and CMR [16,17,18]

Read more

Summary

Introduction

In patients with small hearts, the Quantitative Gated single-photon emission computed tomography (SPECT) (QGS) program frequently underestimates the left ventricular (LV) end-systolic volume (ESV) and overestimates the ejection fraction (EF). A new cardiac software package, cardioREPO/EXINI heart (cREPO), developed by Exini Diagnostics (Lund, Sweden) in collaboration with FUJIFILM RI Pharma (Tokyo, Japan) and Kanazawa University (Ishikawa, Japan), has been proposed to more accurately quantify small hearts using an active shape LV modeling and volume-dependent edge correction algorithm for LV delineation [10]. This method has been evaluated by using digital phantom experiments, a normal database in Japan, and a clinical series of consecutive patients with small and normal-sized hearts [10]. The characteristics of LV quantification with cREPO were compared with those produced by the widely used QGS software [11]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call