Abstract

Background Heart failure with preserved ejection fraction accounts for approximately half of all heart failure cases and is associated with similar morbidity and mortality. Although abnormalities of diastolic function are felt to play an important role, no specific treatments have been identified for this common condition, primarily because of poor understanding of its pathophysiology. Despite development of several murine models of this disease, accurate non-invasive assessment of diastolic function has been challenging. Echocardiographic measurements have been limited by small heart sizes, rapid ventricular rates and high inter-observer variability. The aim of this study was to assess the ability of ultra-high field, high temporal resolution CMR tagging to assess diastolic function in mice, compared to the gold-standard technique of invasive pressure-volume loop analysis.

Highlights

  • Heart failure with preserved ejection fraction accounts for approximately half of all heart failure cases and is associated with similar morbidity and mortality

  • The aim of this study was to assess the ability of ultra-high field, high temporal resolution CMR tagging to assess diastolic function in mice, compared to the gold-standard technique of invasive pressure-volume loop analysis

  • Myocardial tagged images were obtained at the mid-ventricular short axis from endsystole to end-diastole using a spatial modulation of magnetization (SPAMM) sequence (Figure 1A and B)

Read more

Summary

Introduction

Heart failure with preserved ejection fraction accounts for approximately half of all heart failure cases and is associated with similar morbidity and mortality. Abnormalities of diastolic function are felt to play an important role, no specific treatments have been identified for this common condition, primarily because of poor understanding of its pathophysiology. Despite development of several murine models of this disease, accurate non-invasive assessment of diastolic function has been challenging. Echocardiographic measurements have been limited by small heart sizes, rapid ventricular rates and high inter-observer variability. The aim of this study was to assess the ability of ultra-high field, high temporal resolution CMR tagging to assess diastolic function in mice, compared to the gold-standard technique of invasive pressure-volume loop analysis

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.