Abstract

We recently developed a cysteine-containing peptide tag (C-tag) that allows for site-specific modification of C-tag-containing fusion proteins with a bifunctional chelator, HYNIC (hydrazine nicotinamide)-maleimide. We then constructed and expressed C-tagged vascular endothelial growth factor (VEGF) and labeled it with HYNIC. We wished to test (99m)Tc-HYNIC-C-tagged VEGF ((99m)Tc-HYNIC-VEGF) for the imaging of tumor vasculature before and after antiangiogenic (low continuous dosing, metronomic) and tumoricidal (high-dose) cyclophosphamide treatment. HYNIC-maleimide was reacted with the two thiol groups of C-tagged VEGF without any effect on biologic activity in vitro. (99m)Tc-HYNIC-VEGF was prepared using tin/tricine as an exchange reagent, and injected via the tail vein (200-300 microCi, 1-2 microg protein) followed by microSPECT imaging 1 h later. Sequencing analysis of HYNIC-containing peptides obtained after digestion confirmed the site-specific labeling of the two accessible thiol groups of C-tagged VEGF. Tumor vascularity was easily visualized with (99m)Tc/VEGF in Balb/c mice with 4T1 murine mammary carcinoma 10 days after implantation into the left axillary fat pad in controls (12.3+/-5.0 tumor/bkg, n=27) along with its decrease following treatment with high (150 mg/kg q.o.d. x 4; 1.14+/-0.48 tumor/bkg, n=9) or low (25 mg/kg q.d. x 7; 1.03+/-0.18 tumor/bkg, n=9) dose cyclophosphamide. Binding specificity was confirmed by observing a 75% decrease in tumor uptake of (99m)Tc/biotin-inactivated VEGF, as compared with (99m)Tc-HYNIC-VEGF. (99m)Tc can be loaded onto C-tagged VEGF in a site-specific fashion without reducing its bioactivity. (99m)Tc-HYNIC-VEGF can be rapidly prepared for the imaging of tumor vasculature and its response to different types of chemotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.