Abstract
Neurocysticercosis is the most common parasitic infection of the nervous system and currently represents a serious public health issue in many regions of Latin America, Asia, and Africa. To date, praziquantel is one of the chosen drugs for the treatment of neurocysticercosis. Its mechanism of action is based on the inhibition of different biochemical pathways within the parasite which contribute to its death. Thus, the aim of this work was to analyze, for the first time, whether the nanoformulations of praziquantel would modify the energetic pathway of Taenia crassiceps cysticerci, after an intracranial inoculation in BALB/c mice. Praziquantel nanosuspensions were formulated with polyvinyl alcohol, poloxamer 188, and poloxamer 407, as stabilizers. These formulations exhibited particle size in a range of 74-285nm and zeta potential values in a range of - 8.1/- 13.2 depending on the type of stabilizer. Physical stability study at both 4 ± 2 and 25 ± 2°C indicated that praziquantel (PZQ) nanoparticles were stable in terms of solubility and particle size after 120-day storage. In vivo studies demonstrated that those nanosystems were able to produce significant modifications on the concentrations of oxaloacetate, citrate, pyruvate, alpha-ketoglutarate, malate, succinate, lactate, beta-hydroxybutyrate, fumarate, and propionate involved in the metabolism of Taenia crassiceps cysticerci. Therefore, these nanoformulations may be considered as a promising tool to deliver praziquantel to the brain for the effective management of neurocysticercosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.