Abstract

BackgroundLeukocytes are believed to be involved in delayed cell death following traumatic brain injury (TBI). However, data demonstrating that blood-borne inflammatory cells are present in the injured brain prior to the onset of secondary brain damage have been inconclusive. We therefore investigated both the interaction between leukocytes and the cerebrovascular endothelium using in vivo imaging and the accumulation of leukocytes in the penumbra following experimentally induced TBI.MethodsExperimental TBI was induced in C57/Bl6 mice (n = 42) using the controlled cortical impact (CCI) injury model, and leukocyte-endothelium interactions (LEI) were quantified using both intravital fluorescence microscopy (IVM) of superficial vessels and 2-photon microscopy of cortical vessels for up to 14 h post-CCI. In a separate experimental group, leukocyte accumulation and secondary lesion expansion were analyzed in mice that were sacrificed 15 min, 2, 6, 12, 24, or 48 h after CCI (n = 48). Finally, leukocyte adhesion was blocked with anti-CD18 antibodies, and the effects on LEI and secondary lesion expansion were determined 16 (n = 12) and 24 h (n = 21), respectively, following TBI.ResultsOne hour after TBI leukocytes and leukocyte-platelet aggregates started to roll on the endothelium of pial venules, whereas no significant LEI were observed in pial arterioles or in sham-operated mice. With a delay of >4 h, leukocytes and aggregates did also firmly adhere to the venular endothelium. In deep cortical vessels (250 μm) LEIs were much less pronounced. Transmigration of leukocytes into the brain parenchyma only became significant after the tissue became necrotic. Treatment with anti-CD18 antibodies reduced adhesion by 65%; however, this treatment had no effect on secondary lesion expansion.ConclusionsLEI occurred primarily in pial venules, whereas little or no LEI occurred in arterioles or deep cortical vessels. Inhibiting LEI did not affect secondary lesion expansion. Importantly, the majority of migrating leukocytes entered the injured brain parenchyma only after the tissue became necrotic. Our results therefore suggest that neither intravascular leukocyte adhesion nor the migration of leukocytes into cerebral tissue play a significant role in the development of secondary lesion expansion following TBI.

Highlights

  • Leukocytes are believed to play an important role in secondary brain damage following acute brain injury such as stroke or brain trauma [1]

  • It remains unclear whether leukocytes adhere to the cerebrovascular endothelium, migrate into damaged tissue, and cause additional damage or whether they migrate into the damaged brain tissue only after secondary brain injury has occurred. We investigated both the time course and the effect on secondary contusion growth of a) leukocytes that accumulate in the tissue, and b) intravascular leukocytes and leukocyte-platelet aggregates that adhere to the cerebrovascular endothelium following traumatic brain injury precisely in the region in which secondary brain damage occurs

  • The parameters remained within the physiological range as shown in this representative table of values obtained in the experiments testing the effect of anti-CD18 antibodies or IgG control

Read more

Summary

Introduction

Leukocytes are believed to play an important role in secondary brain damage following acute brain injury such as stroke or brain trauma [1]. Blood-borne leukocytes begin to roll on - and subsequently stick to - the cerebrovascular endothelium, and migrate into the cerebral tissue, where they are believed to cause damage, e.g. by releasing reactive oxygen species [2]. Data demonstrating that blood-borne inflammatory cells are present in the injured brain prior to the onset of secondary brain damage have been inconclusive.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.