Abstract

The variation in the concentration of monoamine neurotransmitters and their metabolites in an experimental Parkinsonian animal model established by unilateral 6-hydroxydopamine administration was studied. For the purpose of detecting monoamine neurotransmitters and their metabolites more sensitively, an acetylene black nanoparticles modified electrode was fabricated and used as the working electrode for an electrochemical detector in HPLC. The results indicated that the modified electrode exhibited efficiently electrocatalytic oxidation for monoamine neurotransmitters and their metabolites with relatively high sensitivity, long life, and stability. The linear ranges spanned four orders of magnitude (r>0.998) and the detectability was on the level of 0.1nmolL−1. The percent relative standard deviation (%RSD) for each compound at all concentration levels was lower than 2.57% and 1.94% for intra-day and inter-day precision, respectively. The mean recovery values were between 98.75% and 105.25%, and the %RSD was found to be less than 1.02%. Coupled with in vivo microdialysis sampling, the validated method was successfully applied to measure monoamine neurotransmitters and their metabolites in both sides of the striatum of conscious and freely moving Parkinsonian rats, and the extracellular monoamine neurotransmitters and their metabolites in the lesioned-side striatum of unilateral 6-hydroxydopamine-lesioned rats were lower than that in the intact side striatum or in the striatum of control rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.