Abstract

The role of extracellular polymeric substances (EPS) produced by the heavy metal-resistant strain of Azotobacter spp. in restricting the uptake of cadmium (Cd) and chromium (Cr) by wheat plants cultivated in soils contaminated with the respective heavy metals has been demonstrated. A heavy metal-resistant strain of Azotobacter spp. was isolated and identified. Minimum inhibitory concentrations (MIC) of Cd2+ and CrO4(2-) were determined to be 20 and 10 mg L(-1), respectively. Under in vitro conditions, the EPS produced by the strain could bind 15.17 +/- 0.58 mg g(-1) of Cd2+ and 21.9 +/- 0.08 mg g(-1) of CrO4(2-). Fourier transform infrared spectra of the EPS revealed the presence of functional groups like carboxyl (-COOH) and hydroxyl (-OH), primarily involved in metal ion binding. Under pot culture experiments, the isolated strain of Azotobacter was added to the metal-contaminated soils in the form of free cells and immobilized cells. The total Azotobacter count and plant metal concentrations under different treatments showed a negative coefficient between the Azotobacter population and plant Cd (-0.496) and Cr (-0.455). Thus it could be inferred that Azotobacter spp. is involved in metal ion complexation either through EPS or through cell wall lipopolysaccharides (LPS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call