Abstract

The in vivo tissue reactions and biodegradations of poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) (PHBHHx), poly(lactide) (PLA), poly(3-hydroxybutyrate) (PHB), blends of PHBHHx (X) and poly(ethylene glycol) (PEG) (E) with ratios of 1:1 (E1X1) and 1:5 (E1X5), respectively, were evaluated by subcutaneous implantation in rabbits. Results revealed that the degradation rate increased in the order of PHB<PHBHHx<PLA. During the implantation period, crystallinity of PHBHHx increased from 19% to 22% and then dropped to 14%. Gel permeation chromatography (GPC) displayed increasing polydispersity and typical bimodal distribution from 3 to 6 months. The above results suggested that rapid PHBHHx degradation occurred in amorphous region rather than in crystalline region. While the in vivo hydrolysis of PHB was found to start from a random chain scission both in amorphous and crystalline regions of the polymer matrix, as demonstrated by its hydrolysis process accompanied by a decrease in molecular weight with unimodal distribution and relatively narrow polydispersity. Compared to pure PHBHHx, PHBHHx–PEG blends showed accelerated weight loss of PHBHHx with weak molecular weight reduction. In general, PHBHHx elicited a very mild tissue response during implantation lasting 6 months compared with relative acute immunological reactions observed among PHB and PLA objects, respectively. Pronounced tissue responses were observed in the capsule surrounding E1X1 and E1X5 as characterized by the presence of lymphocytes, eosinophils and vascularization, which might be resulted from the continuous leaching of PEG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.