Abstract

To evaluate the feasibility of in vivo (23)Na imaging of the corticomedullary (23)Na gradient and to measure (23)Na transverse relaxation times (T2*) in human kidneys. In this prospective, IRB-approved study, eight healthy volunteers (4 female, 4 male; mean age 29.4 ± 3.6 years) were examined on a 7-T whole-body MR system using a (23)Na-only spine-array coil. For morphological (23)Na-MRI, a 3D gradient echo (GRE) sequence with a variable echo time scheme (vTE) was used. T2* times were calculated using a multiecho 3D vTE-GRE approach. (23)Na signal-to-noise ratios (SNR) were given on a pixel-by-pixel basis for a 20-mm section from the cortex in the direction of the medulla. T2* maps were calculated by fitting the (23)Na signal decay monoexponentially on a pixel-by-pixel basis, using least squares fit. Mean corticomedullary (23)Na-SNR increased from the cortex (32.2 ± 5.6) towards the medulla (85.7 ± 16.0). The SNR increase ranged interindividually from 57.2% to 66.3%. Mean (23)Na-T2* relaxation times differed statistically significantly (P < 0.001) between the cortex (17.9 ± 0.8 ms) and medulla (20.6 ± 1.0 ms). The aim of this study was to evaluate the feasibility of in vivo (23)Na MRI of the corticomedullary (23)Na gradient and to measure the (23)Na T2* relaxation times of human kidneys at 7 T. • High field MR offers new insights into renal anatomy and physiology. • (23) Na MRI of healthy human kidneys is feasible at ultra-high field. • Renal (23) Na concentration increases from the cortex in the medullary pyramid direction. • In vivo measurements of renal (23) Na-T2* times are demonstrated at 7.0 T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call