Abstract

An increasing number of super-resolution microscopy techniques are helping to uncover the mechanisms that govern the nanoscale cellular world. Single-molecule imaging is gaining momentum as it provides exceptional access to the visualization of individual molecules in living cells. Here, we describe a technique that we developed to perform single-particle tracking photo-activated localization microscopy (sptPALM) in Drosophila larvae. Synaptic communication relies on key presynaptic proteins that act by docking, priming, and promoting the fusion of neurotransmitter-containing vesicles with the plasma membrane. A range of protein-protein and protein-lipid interactions tightly regulates these processes and the presynaptic proteins therefore exhibit changes in mobility associated with each of these key events. Investigating how mobility of these proteins correlates with their physiological function in an intact live animal is essential to understanding their precise mechanism of action. Extracting protein mobility with high resolution in vivo requires overcoming limitations such as optical transparency, accessibility, and penetration depth. We describe how photoconvertible fluorescent proteins tagged to the presynaptic protein Syntaxin-1A can be visualized via slight oblique illumination and tracked at the motor nerve terminal or along the motor neuron axon of the third instar Drosophila larva.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.