Abstract

Changes in chloride cell morphology were examined in the yolk-sac membrane of Mozambique tilapia (Oreochromis mossambicus) embryos and larvae transferred from fresh water to sea water. By labelling chloride cells with DASPEI, a fluorescent probe specific for mitochondria, we observed in vivo sequential changes in individual chloride cells by confocal laser scanning microscopy. In embryos transferred from fresh water to sea water 3 days after fertilization, 75 % of chloride cells survived for 96 h, and cells showed a remarkable increase in size. In contrast, the cell size did not change in embryos and larvae kept in fresh water. The same rate of chloride cell turnover was observed in both fresh water and sea water. Using differential interference contrast (DIC) optics and whole-mount immunocytochemistry with anti-Na(+)/K(+)-ATPase, we classified chloride cells into three developmental stages: a single chloride cell without an apical pit, a single chloride cell with an apical pit, and a multicellular complex of chloride and accessory cells with an apical pit. DIC and immunofluorescence microscopy revealed that single chloride cells enlarged and were frequently indented by newly differentiated accessory cells to form multicellular complexes during seawater adaptation. These results indicate that freshwater-type single chloride cells are transformed into seawater-type multicellular complexes during seawater adaptation, suggesting plasticity in the ion-transporting functions of chloride cells in the yolk-sac membrane of tilapia embryos and larvae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call