Abstract

The highly conserved nature of rRNA sequences throughout evolution allows these molecules to be used to build philogenic trees of different species. It is unknown whether the stability of specific interactions and structural features of rRNA reflects an optimal adaptation to a functional task or an evolutionary trap. In the work reported here, we have applied an in vivo selection strategy to demonstrate that unnatural sequences do work as a functional replacement of the highly conserved binding site of ribosomal protein S8. However, growth competition experiments performed between Escherichia coli isolates containing natural and unnatural S8-binding sites showed that the fate of each isolate depended on the growth condition. In exponentially growing cells, one unnatural variant was found to be equivalent to wild type in competition experiments performed in rich media. In culture conditions leading to slow growth, however, cells containing the wild-type sequence were the ultimate winner of the competition, emphasizing that the wild-type sequence is, in fact, the most fit solution for the S8-binding site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.