Abstract

This study aimed to find a standard of the vertebra kinematics during functional weight-bearing activities in degenerative lumbar scoliosis (DLS) patients. Fifty-four patients were involved into this study with forty-two in DLS group and twelve in the control group. The three-dimensional (3D) vertebral models from L1 to S1 of each participant were reconstructed by computed tomography (CT). Dual-orthogonal fluoroscopic imaging, along with FluoMotion and Rhinoceros software, was used to record segmental vertebral kinematics during functional weight-bearing activities. The primary and coupled motions of each vertebra were analyzed in patients with DLS. During flexion-extension of the trunk, anteroposterior (AP) translation and craniocaudal (CC) translation at L5-S1 were higher than those at L2-3 (9.3 ± 5.1mm vs. 6.4 ± 3.5mm; P < 0.05). The coupled mediolateral (ML) translation at L5-S1 in patients with DLS was approximately three times greater than that in the control group. During left-right bending of the trunk, the coupled ML rotation at L5-S1 was higher in patients with DLS than that in the control group (17.7 ± 10.3° vs. 8.4 ± 4.4°; P < 0.05). The AP and CC translations at L5-S1 were higher than those at L1-2, L2-3, and L3-4. During left-right torsion of the trunk, the AP translation at L5-S1 was higher as compared to other levels. The greatest coupled translation was observed at L5-S1 in patients with DLS. Coupled AP and ML translations at L5-S1 were higher than those in healthy participants. These data improved the understanding of DLS motion characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call