Abstract
Thymus and spleen, in contrast to liver, are radiosensitive tissues in which p53-dependent apoptosis is triggered after whole-body radiation invivo. Combined RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses of radiation-treated mouse organs identifies both shared and tissue-specific p53 transcriptional responses. As expected, the p53 targets shared among thymus and spleen are enriched in apoptotic targets. The inability to upregulate these genes in the liver is not due to reduced gene occupancy. Use of an engineered mouse model shows that deletion of the C terminus of p53 can confer radiation-induced expression of p53 apoptotic targets in the liver with concomitant increased cell death. Global RNA-seq analysis reveals that an additional role of the C terminus is also needed for transcriptional activation of liver-specific p53 targets. It is hypothesized that both suppression of apoptotic gene expression combined with enhanced activation of liver-specific targets confers tissue-specific radio-resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.