Abstract

Ezetimibe is the first in class 2-azetidinone that decreases plasma cholesterol by blocking intestinal cholesterol absorption. Ezetimibe effectively reduces plasma cholesterol in several species including human, monkey, dog, hamster, rat, and mouse, but the potency ranges widely. One potential factor responsible for this variation in responsiveness is diversity in ezetimibe metabolism. After oral administration, ezetimibe is glucuronidated. Both ezetimibe and the glucuronide lower plasma cholesterol; however, the glucuronide exhibits greater potency. Recent identification of Niemann-Pick C1 Like-1 (NPC1L1) as the molecular target of ezetimibe enables direct binding studies to be performed. Here, we report the cloning of NPC1L1 derived from multiple species and assess amino acid sequence homology among human, monkey, dog, hamster, rat, and mouse. The rank order of affinity of glucuronidated ezetimibe for NPC1L1 in each species correlates with the rank order of in vivo activity with monkey > dog > hamster and rat >> mouse. Ezetimibe analogs that bind to NPC1L1 exhibit in vivo cholesterol-lowering activity, whereas compounds that do not bind NPC1L1 are inactive. Specific structural components of ezetimibe are identified as critical for binding to NPC1L1. The results demonstrate that small variations in ezetimibe structure or in NPC1L1 amino acid sequence can profoundly influence ezetimibe/NPC1L1 interaction and consequently in vivo activity. The results demonstrate that the ability of compounds to bind to NPC1L1 is the major determinant of in vivo responsiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.