Abstract

Misaminoacylation of 3,4-dihydroxyphenylalanine (Dopa) molecules to tRNA(Tyr) by endogenous tyrosyl-tRNA synthetase allowed the quantitative replacement of tyrosine residues with a yield of over 90 % by an in vivo residue-specific incorporation strategy, to create, for the first time, engineered mussel adhesive proteins (MAPs) in Escherichia coli with a very high Dopa content, close to that of natural MAPs. The Dopa-incorporated MAPs exhibited a superior surface adhesion and water resistance ability by assistance of Dopa-mediated interactions including the oxidative Dopa cross-linking, and furthermore, showed underwater adhesive properties comparable to those of natural MAPs. These results propose promising use of Dopa-incorporated engineered MAPs as bioglues or adhesive hydrogels for practical underwater applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.