Abstract

In the last two decades, alginate scaffolds have been variously studied as extracellular matrix analogs for tissue engineering. However, relevant evidence is still lacking concerning their ability to mimic the microenvironment of hierarchical tissues such as bone. Hence, an increasing amount of attention has recently been devoted to the fabrication of macro/microporous sponges with pore anisotropy able to more accurately replicate the cell niche structure as a trigger for bioactive functionalities. This paper presents an in vivo study of alginate sponges with anisotropic microporous domains (MAS) formed by ionic crosslinking in the presence of different fractions (30 or 50% v) of hydroxyapatite (HA). In comparison with unloaded sponges (MAS0), we demonstrated that HA confers peculiar physical and biological properties to the sponge, depending upon the inorganic fraction used, enabling the sponge to bio-mimetically support the regeneration of newly formed bone. Scanning electron microscopy analysis showed a preferential orientation of pores, ascribable to the physical constraints exerted by HA particles during the pore network formation. Energy dispersive spectroscopy (EDS) and X-Ray diffraction (XRD) confirmed a chemical affinity of HA with the native mineral phase of the bone. In vitro studies via WST-1 assay showed good adhesion and proliferation of human Dental Pulp-Mesenchymal Stem Cells (hDP-MSC) that increased in the presence of the bioactive HA signals. Moreover, in vivo studies via micro-CT and histological analyses of a bone model (e.g., a rat calvaria defect) confirmed that the maximum osteogenic response after 90 days was achieved with MAS30, which supported good regeneration of the calvaria defect without any evidence of inflammatory reaction. Hence, all of the results suggested that MAS is a promising scaffold for supporting the regeneration of hard tissues in different body compartments.

Highlights

  • The ability to reproduce the complex hierarchal organization of a tissue architecture still represents one of the greatest challenges for the regeneration and repair of a broad range of damaged anisotropic tissues (Perez et al, 2018)

  • It has been demonstrated that low viscous sodium alginate (SA) can promote the formation of fully interconnected porous sponges with average pore sizes of around 100 μm (Supplementary Figure S1) that are suitable for supporting cell adhesion and proliferation (Thein-Han and Misra, 2009), as confirmed by preliminary studies

  • The ion gelation mechanism was properly particularized in order to obtain a peculiar anisotropy of the three-dimensional pore network, mainly imparted by the presence of HA particles that stabilize the pore surfaces during the phase separation process

Read more

Summary

Introduction

The ability to reproduce the complex hierarchal organization of a tissue architecture still represents one of the greatest challenges for the regeneration and repair of a broad range of damaged anisotropic tissues (Perez et al, 2018). In the last two decades, the efficient use of anisotropic porous scaffolds has been largely validated in bone surgery, due to the opportunity to impart instructive functions to cells – by optimizing specific features of the materials (i.e., porosity, roughness, stiffness, biodegradation, fluid, and molecular transport) – able to synchronously guide the regeneration process, while the porous scaffold disappears in the local microenvironment (Guarino et al, 2012b) In this view, the gold standard is currently represented by composite scaffolds obtained by the combination of polymer and ceramic biomaterials, sagely processed to provide a welldefined pattern of physical and biochemical signals able to trigger the basic activities of progenitor cells toward a more efficient proliferation and cell differentiation (Funda et al, 2020). The use of formulations doped with specific chemical elements (i.e., Zn, and Mg) can promote direct chemical bonds with the adjacent natural bone tissue by assuring higher stability of crystals into the body fluids as the osteointegration mechanism goes on (Veronesi et al, 2015)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call