Abstract

Ovulation and egg-laying behavior in the pond snailLymnaea stagnalis are controlled by the neuroendocrine caudodorsal cells (CDCs), constituting two clusters — one in each cerebral ganglion — totaling about 100 cells. In vitro studies have shown that the CDCs release their products, including the ovulation hormone, during a burst of spiking activity lasting for about 30 min (CDC discharge). This burst can be initiated by repeated intracellular stimulation with depolarizing current pulses, in which case the firing pattern is termed ‘afterdischarge’. Using cuff electrodes we recorded extracellularly from the intercerebral commissure, (the neurohaemal area of the CDCs) to study the activity of these cells during spontaneous egg-laying of freely behaving snails. The cuff-implanted snails showed long-lasting spiking activity prior to every bout of egg-laying. These spontaneous long-lasting discharges had several features in common with the intracellularly recorded activity of the CDCs in vitro: the time courses of spike broadening and of firing rates in the cuff-implanted animals were very similar to the characteristic patterns found in the isolated brain. Firing rates were higher and durations were longer in the cuff-implanted animals, however. In vitro, the duration of the discharge could be prolonged appreciably by recording in blood instead of normal saline, indicating that the bathing fluid normally used causes shortening of the CDC discharge. The way in which CDC discharges are triggered is discussed as a possible explanation for the differences in firing rates. The pattern of locomotion during spontaneous egg-laying was largely similar in cuff-implanted and unoperated animals. The level of locomotion was lower in the experimental animals. In addition, the rate of locomotion only partially returned to pre-oviposition levels. This is ascribed to the effect of the operation. It is concluded that the afterdischarge is the natural firing pattern of the caudodorsal cells ofLymnaea, and that this firing pattern constitutes the central event in the egg-laying behavior of this animal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.