Abstract
The penetration of small molecules through the human skin is a major issue for both safety and efficacy issues in cosmetics and pharmaceutic domains. To date, the quantification of active molecular compounds in human skin following a topical application uses ex vivo skin samples mounted on Franz cell diffusion set-up together with appropriate analytical methods. Coherent anti-Stokes Raman scattering (CARS) has also been used to perform active molecule quantification on ex vivo skin samples, but no quantification has been described in human skin in vivo. Here we introduce and validate a framework for imaging and quantifying the active molecule penetration into human skin in vivo. Our approach combines nonlinear imaging microscopy modalities, such as two-photon excited auto-fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS), together with the use of deuterated active molecules. The imaging framework was exemplified on topically applied glycerol diluted in various vehicles such as water and xanthan gel. In vivo glycerol quantitative percutaneous penetration over time was demonstrated, showing that, contrary to water, the xanthan gel vehicle acts as a film reservoir that releases glycerol continuously over time. More generally, the proposed imaging framework provides an enabling platform for establishing functional activity of topically applied products in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.