Abstract

Sentinel lymph node (SLN) biopsy has emerged as a preferred method for axillary lymph node staging of breast cancer, and imaging the SLN in three-dimensional space is a prerequisite for the biopsy. Conventional SLN mapping techniques based on the injection of an organic dye or a suspension of radioactive colloids suffer from invasive surgical operation for visual detection of the dye or hazardous radioactive components and low spatial resolution of Geiger counters in detecting the radioactive colloids. This work systematically investigates the use of gold nanocages (AuNCs) as a novel class of optical tracers for noninvasive SLN imaging by photoacoustic (PA) tomography in a rat model. The transport of AuNCs in a lymphatic system and uptake by the SLN were evaluated by PA tomography on the axillary region of a rat. Quantification of AuNCs accumulated in the lymph node was achieved by correlating the data from PA imaging with the results from inductively coupled plasma mass spectrometry. Several parameters were systematically evaluated and optimized, including the concentration, size, and surface charge of the AuNCs. These results are critical to the further development of this AuNC-based PA tomography system for noninvasive SLN imaging, providing valuable information for metastatic cancer staging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.