Abstract

Background and objectiveBone strontium (Sr) is a reliable biomarker for studying related bone health outcomes and the effectiveness of Sr supplements in osteoporosis disease treatment. In this study, we evaluated the sensitivity of portable x-ray fluorescence (XRF) technology for in vivo bone Sr quantification among adults. Materials and methodsSr-doped bone-equivalent phantoms were used for system calibration. Using the portable XRF, we measured bone Sr levels in vivo in mid-tibia bone in 76 adults, 38–95 years of age, living in Indiana, US; we also analyzed bone data of 29 adults, 53–82 years of age, living in Shanghai, China. The same portable XRF device and system settings were used in measuring their mid-tibia bone. We compared bone Sr concentrations by sex, age, and recruitment site. We also used multiple linear regression model to estimate the association of age with bone Sr concentration, adjusting for sex and recruitment site. ResultsThe uncertainty of in vivo individual measurement increased with higher soft tissue thickness overlying bone, and it ranged from 1.0 ug/g dry bone (ppm) to 2.4 ppm with thickness ranging from 2 to 7 mm, with a measurement time of 5 min. Geometric mean (95% confidence interval (CI)) of the bone Sr concentration was 79.1 (70.1, 89.3) ppm. After adjustment for recruitment site and sex, an increase in five years of age was associated with a 8.9% (95% CI: 2.5%, 15.6%) increase in geometric mean bone Sr concentration. Discussion and conclusionSr concentrations were consistently well above detection limits of the portable XRF, and exhibited an expected increase with age. These data suggest that the portable XRF can be a valuable technology to quantify Sr concentration in bone, and in the study of Sr-related health outcomes among adults, such as bone mineral density (BMD) and bone fracture risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.